365体育·(中国)官方网站-最新版App Store下载

当前位置: 365体育app官网版下载 > 师资队伍 > 导师风采 > 硕士生导师 > 正文

李斌

时间:2021-05-14 访问次数:

 

李斌

个人简历

出生年月:198510

任职年月:20187

职称:教授

党政职务:节能技术研究院常务副院长

技术职务:江苏省特聘教授

所在学科:动力工程及工程热物理/新能源科学与工程

导师:博导、硕导

最高学位:博士(华中科技大学 学士、博士、博士后,澳大利亚科廷大学 访问学者、博士后)

学术任职:1. 第一、二届苏港澳生物质能源与材料会议主席;

2. 国际SCI期刊Frontiers in Chemistry(中科院二区)副主编;

3. Frontiers in Nanotechnology期刊审稿编辑,以及多个国内外期刊特邀客座编辑;

4. Environmental Science & TechnologyFuelEnergyFuel Processing TechnologyBioresource TechnologyEnergy Conversion and Management20余个国际顶级期刊审稿专家;

5. 国家自然科学基金、中国博士后科学基金、浙江省自然科学基金等通讯评议专家;

6. 中国可再生能源学会生物质能专委会委员、江苏省可再生能源学会生物质能专委会专家兼生物质多联产工作组组长、江苏省能源研究协会会员。

联系方式:libin198520@126.com;微信:164070019

研究领域

1.          生物质热解:热解复杂体系交互作用;生物质有氧快速热解;生物质基碳材料

2.          生物质催化气化制氢

3.          固体废弃物能源化利用

4.          CO2捕集与转化利用

5.          污染物排放控制

在研项目

主持的主要项目:

1.        江苏省特聘教授人才项目,2020-2023

2.        国家自然科学基金面上项目(52276196):生物质有氧快速热解过程机理与选择性调控机制研究,2023-2026

3.        国家自然科学基金面上项目(51876225):生物质热解过程中挥发分与焦的多相交互反应机理研究,2019-2022

4.        江苏省“双创”博士:生物质/废弃物热解气固交互反应机理研究,2020-2021

5.        江苏省“六大人才高峰”高层次人才项目:新型高强度生物质基成型炭材料制备关键技术研究,2019-2022

6.        国家自然科学基金面上项目(51676081):生物质转化过程中焦油原位催化裂解与CO2捕集促进制氢的研究,2017-2020(合作主持)

7.        国家自然科学基金青年项目(51306066):基于CO2捕集的秸秆低温催化气化制氢过程机理研究,2014-2016

8.        中国博士后科学基金(2012M521425):基于CO2捕集的秸秆低温催化气化制氢机理研究,2012-2014

9.        煤燃烧国家重点实验室开放基金:生物质有氧热解过程机理与产物调控机制研究,2021-2022

10.     生物质热化学技术国家重点实验室开放基金:生物质裂解气化制备富氢合成气研究,2014-2015

11.     生物质发电成套设备国家工程实验室开放基金:生物质定向热解耦合催化/脱碳重整制氢机理研究,2013-2014

12.     中央高校基本科研业务费项目:吸收强化生物质水蒸气气化制氢的机理研究,2010-2011

13.     365体育app官网版下载高级人才科研启动基金,2018-2021

参与的主要项目:

14.     国家重点研发计划课题(2016YFB0600203-02):660MW高效超超临界循环流化床锅炉提效技术研究,2016-2020,排名2

15.     国家自然科学基金(51706083):聚焦太阳能高温气化生物质制备合成气的机理研究,2018-2020,排名2

16.     公益性行业(农业)科研专项(201303095-3):热解炭化气体产物净化提质技术与设备,2013-2015,排名2

17.     国家自然科学基金(51476067):生物质成型燃料燃烧颗粒物形成机理研究,2015-2018,排名3

18.     国家自然科学基金(51376076):生物质气化过程中热解焦与挥发分气体的交互反应机理研究,2014-2017,排名3

主要论文(第一作者/通讯作者)

1.         Char structure evolution during molten salt pyrolysis of biomass: Effect of temperature. Fuel 2023; 331: 125747.

2.         Migration and transformation of alkali/alkaline earth metal species during biomass and coal co-gasification: A review. Fuel Processing Technology 2022; 235: 107376.

3.         Tuning Sulfur Vacancies in CoS2 via a Molten Salt Approach for Promoted Mercury Vapor Adsorption. Chemical Engineering Journal 2022; 137956.

4.         Molten salt shielded preparation of rice straw biochars doped by copper sulfide for elemental mercury capture. Journal of the Energy Institute 2022; 102: 176-83.

5.         Graphitic Carbon Nitride for Gaseous Mercury Emission Control: A Review. Energy & Fuels 2022.

6.         Current challenges and future prospect of biomass cooking and heating stoves in Asian Countries. Frontiers in Energy Research 2022; 10.

7.          Volatile-char interactions during biomass pyrolysis: Reactor design toward product control. Renewable Energy 2022; 185: 1-7.

8.          A review of CaO based catalysts for tar removal during biomass gasification. Energy 2022; 244: 123172.

9.          Biocoke production from heat treatment of bio-oil: Effect of temperature. Journal of Analytical and Applied Pyrolysis 2022; 161: 105401.

10.       Molten salt synthesis of WS2 and MoS2 nanosheets toward efficient gaseous elemental mercury capture. Science of The Total Environment 2022; 824: 153934.

11.       Morphology-dependent photocatalysis of graphitic carbon nitride for sustainable remediation of aqueous pollutants: A mini review. Journal of Environmental Chemical Engineering 2022; 10: 107438.

12.       Coke formation during rapid quenching of volatile vapors from fast pyrolysis of cellulose. Fuel 2021; 306: 121658.

13.       Volatile-char interactions during biomass pyrolysis: Effect of char preparation temperature. Energy 2021; 215: 119189.

14.       Gaseous mercury removal using biogenic porous silica modified with potassium bromide. Journal of the Energy Institute 2021; 99: 161-9.

15.       Elemental mercury capture by graphene-analogous carbon nitride anchored with copper sulfide. Chemical Engineering Journal 2021; 417: 127931.

16.       Understanding the catalytic upgrading of bio-oil from pine pyrolysis over CO2-activated biochar. Renewable Energy 2021; 174: 538-46.

17.       Hydrogen rich syngas production from sorption enhanced gasification of cellulose in the presence of calcium oxide. Energy 2021; 228: 120659.

18.       Ordinary clay as a support of nickel catalyst for steam reforming of acetic acid: impacts of pretreatments of clay on catalytic behaviors. International Journal of Energy Research 2020.

19.       Fundamental Advances in Biomass Autothermal/Oxidative Pyrolysis: A Review. ACS Sustainable Chemistry & Engineering 2020; 8: 11888-905.

20.       Simulation of sorption enhanced staged gasification of biomass for hydrogen production in the presence of calcium oxide. International Journal of Hydrogen Energy 2020; 45: 26855-64.

21.       Changes in Biochar Functional Groups and Its Reactivity after Volatile–Char Interactions during Biomass Pyrolysis. Energy & Fuels 2020; 34: 14291-9.

22.       Influence of Biochar on the Steam Reforming of Biomass Volatiles: Effects of Activation Temperature and Atmosphere. Energy & Fuels 2019; 33: 2328-34.

23.       Co-hydrothermal carbonization of digested sewage sludge and cow dung biogas residue: Investigation of the reaction characteristics. Energy 2019; 187. (高被引/热点论文)

24.       Effects of potassium salts loading on calcium oxide on the hydrogen production from pyrolysis-gasification of biomass. Bioresource Technology 2018; 249: 744-50.

25.       Influence of Addition of a High Amount of Calcium Oxide on the Yields of Pyrolysis Products and Noncondensable Gas Evolving during Corn Stalk Pyrolysis. Energy & Fuels 2017; 31: 13705-12.

26.       Absorption-enhanced steam gasification of biomass for hydrogen production: Effects of calcium-based absorbents and NiO-based catalysts on corn stalk pyrolysis-gasification. International Journal of Hydrogen Energy 2017; 42: 5840-8.

27.       Hydrogen production from agricultural biomass wastes gasification in a fluidized bed with calcium oxide enhancing. International Journal of Hydrogen Energy 2017; 42: 4832-9.

28.       The enhancing mechanism of calcium oxide on water gas shift reaction for hydrogen production. Energy 2014; 68: 248-54.

29.       Absorption-enhanced steam gasification of biomass for hydrogen production: Effect of calcium oxide addition on steam gasification of pyrolytic volatiles. International Journal of Hydrogen Energy 2014; 39: 15416-23.

30.       Characteristics of the Temperature Distribution and Product Gas Evolving of an Updraft Biomass Gasifier. Energy & Fuels 2013; 27: 1460-5.

31.       Modeling and Simulation of Calcium Oxide Enhanced H2 Production from Steam Gasification of Biomass. Journal of Biobased Materials and Bioenergy 2011; 5: 378-84.

学术及科研成果

1.          一种连续式生物质热解炭气油多联产系统,中国专利优秀奖,2015

2.          吸收强化生物质水蒸气气化制氢的机理研究,优秀项目负责人,2011

获奖情况

1.          365体育app官网版下载优秀教师,2022

2.          华中科技大学优秀博士后,2014

3.          华中科技大学优秀毕业生,2006

发明专利

1.          一种生物质分级气化制氢方法,中国发明专利,201910288799.12019.04.11

2.          一种生物质热解气化制氢并联产焦炭的方法与装置,中国发明专利,201910288624.02019.04.11

3.          一种生物油脱氧提质方法,中国发明专利,202010055228.62020.1.17

4.          一种钙基生物质化学链热解系统,中国发明专利,202010053014.52020.1.17

5.          一种立式搅拌研磨热解装置,中国发明专利,202010053473.32020.1.17

6.          一种生物质自热热解及生物油原位脱氧方法与装置,中国发明专利,2020.6.11

7.          一种生物质有氧热解方法与装置,中国发明专利,202110584367.22021.5.27

8.          一种生物质分级气化制富氢合成气的系统,中国发明专利,202110584380.82021.5.27

其他

1.          每年招收博士研究生1名,硕士研究生2-3名。

学院微信公众号

365体育·(中国)官方网站微博